Peer-reviewed publications

    Submitted

  1. Cheng Y., Dehant V., Rivoldini A., Rekier J., Bizouard C.2025, “Basic Earth Parameters from VLBI observations using Bayesian inversions in the time domain: update insights of the Earth's interior.”, Solid Earth, EGUSphere-2025-4428, submitted.
  2. Pfeffer J., Cazenave A., Dehant V., Mandea M., Gillet N., Rosat S., Abarca del Rio R., 2025, “Interactions Between Atmospheric and Core Angular Momentum in the Length-of-Day Six-Year Cycle.”, Earth and Planetary Science Letters, submitted.
  3. Cazenave A., Yang C. Bouih M., Storto A., Chen J., Llovel W., von Schuckmann K., Leclercq L., 2025, “Evidence for increased deep ocean warming from a sea level budget approach.”, Earth Future, submitted.
  4. Rogers H.F, Mandea M., 2025, “How Do Core Surface Flow Models Vary When Inverted from IGRF-14 Candidate Field Models?”, Earth, Planets, and Space, Special Issue on International Geomagnetic Reference Field - The Fourteenth Generation, in review, DOI: 10.21203/rs.3.rs-7021355/v1.

  5. 2025

  6. Shakespeare-Rees N., Livermore P.W., Davies C.J., Rogers H.F., Brown W.J., Beggan C.D., Finlay C.C.
    2025, “Local Flow Estimation at the top of the Earth’s Core using Physics Informed Neural Networks.”, Physics of the Earth and Planetary Interiors: Terrestrial Magnetism: Insights from ten years of the Swarm satellite constellation Special Issue, 364, 107424, DOI: 10.1016/j.pepi.2025.107424.
  7. Rogers H.F., Gillet N., Aubert J., Personnettaz P., Mandea M.
    2025, “Effects of geodynamo priors and geomagnetic data on inverted core surface flows.”, Physics of the Earth and Planetary Interiors: Terrestrial Magnetism: Insights from ten years of the Swarm satellite constellation Special Issue, 364, 107323, DOI: 10.1016/j.pepi.2025.107323.
  8. Mandea M.
    2025, “A Multi-Year Signal of Earth's Interior Dynamics.”, J. Geol. Soc. India, 101(6), 878-883, DOI: 10.17491/jgsi/2025/174177.
  9. Cazenave A.
    2025, “Present-day sea level rise and causes: the role of space observations.”, J. Geol. Soc. India, 101(6), 937-941, DOI: 10.17491/jgsi/2025/174187.
  10. Rekier J., Triana S. A., Barik A., Abdulah D., Kang W.
    2025, “Constraints on Earth's Core-Mantle boundary from nutation.”, DOI: arXiv:2507.01671.
  11. Rekier J., Triana S.A., Buffett B.
    2025, “Boundary conditions for the electric field in Earth’s core model with conducting boundaries.”, Geophysical Research Letters, 52, e2024GL113585, DOI: 10.1029/2024GL113585.
  12. Gerick F., and Mandea M.
    2025, “Surface core flow dynamic pressure estimation.”, Geophys. J. Int., 243(1), ggaf321, DOI: 10.1093/gji/ggaf321.
  13. Rogers H.F., Beggan C.D., Whaler K.A.
    2025, “The impact of LLVPs on regional secular variation of the magnetic field.”, Physics of the Earth and Planetary Interiors, 364, 107367, DOI: 10.1016/j.pepi.2025.107367.
  14. Leclercq L., Dieng H.B., Cazenave A, Birol F., Oelsmann J., Passaro M., Jevrejeva S., Bergsma E., Connors S.
    2025, “Spatio-temporal changes in interannual sea level along the world coastlines.”, Global and Planetary Change, 253, 104972, DOI: 10.1016/j.gloplacha.2025.104972.
  15. Bouih M., Barnoud A., Yang C., Storto A., Blazquez A., Llovel W., Fraudeau R., Cazenave A.
    2025, “Regional sea level trend budget over 2004–2022.”, Ocean Sci., 21, 1425-1440, DOI: 10.5194/os-21-1425-2025.
  16. Gaugne Gouranton C., Panet I., Greff-Lefftz M., Mandea M., Rosat S.
    2025, “GRACE Detection of Transient Mass Redistributions During a Mineral Phase Transition in the Deep Mantle.”, Geophysical Research Letters, 52(17), e2025GL116408, DOI: 10.1029/2025GL116408.
  17. Dumberry M., Gerick F., Gillet N.
    2025, “Millennial axially symmetric Magneto-Coriolis modes in Earth’s fluid core.”, Geophys. J. Int., 240(3), 2076-2090, DOI: 10.1093/gji/ggaf025.
  18. Dehant V., Puica M., Folgueira M., Rekier J., Trinh A., Van Hoolst T.
    2025, “Analytical computation of the total topographic torque at the Core-Mantle Boundary and its impact on nutations.”, Geophys. J. Int., 240(3), 2076-2090, DOI: 10.1093/gji/ggaf050.
  19. Cazenave A., Pfeffer J., Mandea M., Dehant V., and Gillet N.
    2025, “Why is the Earth System oscillating at a 6-year period?”, Surveys in Geophysics, Surveys in Geophysics, 46, 503-528, DOI: 10.1007/s10712-024-09874-4.
  20. Hannah F. Rogers, Ciarán D. Beggan, Kathryn A. Whaler
    2025, The impact of LLVPs on regional secular variation of the magnetic field, Physics of the Earth and Planetary Interiors, 364, 107367, DOI: 10.1016/j.pepi.2025.107367.
  21. Leclercq, L., Dieng H.B., Cazenave A, Birol F., Oelsmann J., Passaro M., Jevrejeva S., Erwin Bergsma E., Connors S.
    2025, Spatio-temporal changes in interannual sea level along the world coastlines, Global and Planetary Change, 253, 104972, DOI: 10.1016/j.gloplacha.2025.104972.
  22. Bouih, M., Barnoud A., Yang C., Storto A., Blazquez A., Llovel W., Fraudeau R., Cazenave A.
    2025, Regional sea level trend budget over 2004–2022, Ocean Sci., 21, 1425-1440, DOI: 10.5194/os-21-1425-2025.
  23. Gaugne Gouranton, C., Panet I., Greff-Lefftz M., Mandea M., Rosat S.
    2025, GRACE Detection of Transient Mass Redistributions During a Mineral Phase Transition in the Deep Mantle. Geophysical Research Letters, 52(17), e2025GL116408, DOI: 10.1029/2025GL116408
  24. Dumberry, M., Gerick F., Gillet N.
    2025, Millennial axially symmetric Magneto-Coriolis modes in Earth’s fluid core. Geophys. J. Int., 240(3), 2076-2090, DOI: 10.1093/gji/ggaf025

  25. 2024

  26. Barik A., S A. Triana, Hoff M., Wicht J.
    2024, “Transition to turbulence in the wide-gap spherical Couette system.”, Journal of Fluid Mechanics, 1001, Id. A1, DOI: 10.1017/jfm.2024.650.
  27. Lecomte H., Rosat S., Mandea M.
    2024, “Gap filling between GRACE and GRACE-FO missions: assessment of interpolation techniques.”, Journal of Geodesy, 98(12), Id. 107, DOI: 10.1007/s00190-024-01917-3.
  28. Gillet N., Dall'Asta F., Amblard P.-O., Claveau R., Aubert J.
    2024, “Waves in Earth's core and geomagnetic field forecast.”, Physics of the Earth and Planetary Interiors, 357, 107284, DOI: 10.1016/j.pepi.2024.107284.
  29. Gerick F. and Livermore P. W.
    2024, “Supplementary Material from Interannual Magneto–Coriolis modes and their sensitivity on the magnetic field within the Earth’s core.”, The Royal Society Journal contribution, DOI: 10.6084/m9.figshare.26531633.v1.
  30. Rodell M., Barnoud A., Robertson F.R., Allan R.P., Bellas-Manley A., Bosilovich M.G., Chambers D., Landerer F., Loomis B., Nerem R.S., O'Neill M.M., Wiese D., Seneviratne S.I.
    2024, “An Abrupt Decline in Global Terrestrial Water Storage and Its Relationship with Sea Level Change”, Surv. Geophys., 45, 1875-1902, DOI: 10.1007/s10712-024-09860-w.
  31. Lim K. W., Deguen R., Cébron D., Schulze A., Mandea M.
    2024, “Compaction-Driven Convection in the Growing Inner Core.”, Geophys. Res. Letters, 51(23), Id. 2024GL110749, 12 pp., DOI: 10.1029/2024GL110749.
  32. Balasis G., De Santis A., Papadimitriou C., Boutsi A.Z., Cianchini G., Giannakis O., Potirakis S.M., Mandea M.
    2024, “Swarm Investigation of Ultra-Low-Frequency (ULF) Pulsation and Plasma Irregularity Signatures Potentially Associated with Geophysical Activity.”, Remote Sensing, 16(18), Id. 3506, DOI: 10.3390/rs16183506.
  33. Gerick F. and Livermore P. W.
    2024, “Interannual Magneto–Coriolis modes and their sensitivity on the magnetic field within the Earth’s core.”, Proc. R. Soc. A., 480, 20240184, DOI: 10.1098/rspa.2024.0184.
  34. Ginisty, F., Wrobel F., Ecoffet R., Mandea M., Michez A., Balcon N., Ruffenach M., Mekki J.
    2024, “South Atlantic Anomaly Evolution Seen by the Proton Flux.”, Journal of Geophysical Research: Space Physics, 129(6), article id. e2023JA032186, DOI: 10.1029/2023JA032186.
  35. Schwaiger T., Gillet N., Jault D., Istas M., Mandea M.
    2024, “Wave-like motions and torques in Earth's core as inferred from geomagnetic data: a synthetic study.”, Phys. Earth Planet. Int., 346, Id. 107104, DOI: 10.1016/j.pepi.2023.107104.

  36. 2023

  37. Pfeffer J., Cazenave A., Blazquez A., Decharme B., Munier S., and Barnoud A.
    2023, “Detection of slow changes in terrestrial water storage with GRACE and GRACE-FO satellite gravity missions.”, Solid Earth, 14(12), 1267-1287, DOI: 10.5194/egusphere-2022-1032.
  38. Saraswati A. T., de Viron O., Mandea M.
    2023, “Earth's core variability from the magnetic and gravity field observations.”, DOI: 10.5194/egusphere-2023-856.
  39. Lecomte H., Rosat S., Mandea M., Dumberry M.
    2023, “Gravitational constraints on the Earth's inner core differential rotation.”, Geophysical Research Letters, 50(23), e2023GL104790, DOI: 10.1029/2023GL104790.
  40. Firsov I., Jault D., Gillet N., Aubert J., Mandea M.
    2023, “Radial shear in the flow at the Earth's core surface.”, Geophys. J. Int., 235(3), 2524-2539, DOI: 10.1093/gji/ggad376.
  41. Pfeffer J., Cazenave A., Blazquez A., Decharme B., Munier S., and Barnoud A.
    2023, “Assessment of pluri-annual and decadal changes in terrestrial water storage predicted by global hydrological models in comparison with the GRACE satellite gravity mission.”, Hydrol. Earth Syst. Sci., 27, 3743-3768, DOI: 10.5194/hess-27-3743-2023.
  42. Pfeffer J., Cazenave A., Rosat S., Moreira L., Mandea M., Dehant V., Coupry B.
    2023, “A 6-year cycle in the Earth system. Global and Planetary Change.”, 229, Id. 104245, DOI: 10.1016/j.gloplacha.2023.104245.
  43. Seuren F. , Triana S. A., Rekier J., Barik A. , Van Hoolst T.
    2023, “Effects of the librationally induced flow in Mercury’s fluid core with an outer stably stratified layer.”, The Planetary Science Journal, 4(9), Id. 161, 19 pages, DOI: 10.3847/PSJ/acee77.
  44. Barik A., Triana S. A., Calkins M., Stanley S., Aurnou J.
    2023, “Onset of Convection in Rotating Spherical Shells: Variations With Radius Ratio. Earth and Space Science.”, 10(1), Id. e2022EA002606, DOI: 10.1029/2022EA002606.
  45. Rekier J., Triana S. A., Trinh A., Buffett B.
    2023, Electric interface condition for sliding and viscous contacts.”, Physical Review Research, 5(3), Id.033029, DOI: 10.1103/PhysRevResearch.5.033029.
  46. Shih S.A., Triana S.A., and Dehant V.
    2023, “Turbulent Dissipation in the Boundary Layer of Precession-Driven Flow: Implications for Free Core Nutation.”, AIP Advances, 13(7), Id. 075025, AIP Publishing, DOI: 10.1063/5.0146932.
  47. Pollet A., Coulot D., Biancale R., Pérosanz F., Loyer S., Marty J.-C., Glaser S., Schott-Guilmault V., Lemoine J.-M., Mercier F., Nahmani S., Mandea M.
    2023, “GRGS numerical simulations for a GRASP-like mission.”, Journal of Geodesy, 97(5), Id.45, DOI: 10.1007/s00190-023-01730-4.
  48. Lecomte H., Rosat S., Mandea M., Boy J.-P., Pfeffer J.
    2023, “Uncertainty of low-degree space gravimetry observations: surface processes versus Earth’s core signal.”, Journal of Geophysical Research: Solid Earth, 128(7), Id. e2023JB026503, DOI: 10.1029/2023JB026503.
  49. Cazenave A., Pfeffer J., Mandea M., Dehant V.
    2023, “ESD Ideas: A 6-year oscillation in the whole Earth system?”, Earth Syst. Dynam., 14(4), 733-735, DOI: 10.5194/esd-14-733-2023.
  50. Barnoud A., Pfeffer J., Cazenave A. and Ablain M.
    2023, “Revisiting the global ocean mass budget over 2005-2020.”, Ocean Sciences, 19(2), 321-334, DOI: 10.5194/os-19-321-2023.
  51. Goux O., Pfeffer J., Blazquez A., Weaver A. T., Ablain M.
    2023, “A mass conserving filter based on diffusion for gravity recovery and climate experiment (GRACE) spherical harmonics solutions.”, Geophysical Journal International, 234(1), 56-72, DOI: 10.1093/gji/ggad016.
  52. Schwaiger T., Jault D., Gillet N., Schaeffer N., Mandea M.
    2023, “Local estimation of quasi-geostrophic flows in Earth's core.”, Geophysical Journal International, 234(1), 494-511, DOI: 10.1093/gji/ggad089.
  53. Puica M., Dehant V., Folgueira M., Van Hoolst T., Rekier J.
    2023, “Analytical computation of the total topographic torque at the Core-Mantle Boundary and its impact on tidally driven Length-of-Day variations.”, Geophys. J. Int., 234(1), 585-596, DOI: 10.1093/gji/ggad077.
  54. Delva P., Altamimi Z., Blazquez A., Blossfeld M., Böhm J., Bonnefond P., Boy J.-P., Bruinsma S., G Bury., Chatzinikos M., Couhert A., Courde C., Dach R., Dehant V., Dell’Agnello S., Elgered G., Enderle W., Exertier P., Glaser S., Haas R., Huang W., Hugentobler U., Jäggi A., Karatekin Ö., Lemoine F., Le Poncin-Lafitte C., Lunz S., Männel B., Mercier F., Métivier L., Meyssignac B., Müller J., Nothnagel A., Perosanz F., Rietbroek R., Rothacher M., Sert H., Schuh H., Sosnica K., Testani P., Ventura-Traveset J., Wautelet G., Zajdel R.
    2023, “GENESIS: Co-location of Geodetic Techniques in Space.”, Earth Planets Space, 75, 5, DOI: 10.1186/s40623-022-01752-w.

  55. 2022

  56. Dehant V., Blanc M., Mackwell S., Soderlund K.M., Beck P., Bunce E., Charnoz S., Foing B., Filice V., Fletcher L.N., Forget F., Griton L., Hammel H., Höning D., Imamura T., Jackman C., Kaspi Y., Korablev O., Leconte J., Lellouch E., Marty B., Mangold N., Michel P., Morbidelli A., Mousis O., Prieto-Ballesteros O., Spohn T., Schmidt J., Sterken V.J., Tosi N., Vandaele A.C., Vernazza P., Vazan A., Westall F.
    2022, “From science questions to Solar System exploration.”, Chapter 3, Planetary Exploration Horizon 2061 – Report ‘Planetary Exploration Horizon 2061, A Long-Term Perspective for Planetary Exploration’, pages 65-175, DOI: 10.1016/B978-0-323-90226-7.00006-4.
  57. Triana S.A., Guerrero G., Barik A., Rekier J.
    2022, “Identification of Inertial Modes in the Solar Convection Zone.”, The Astrophysical Journal Letters, 934(1), Id. L4, 9 pp., DOI: 10.3847/2041-8213/ac7dac.
  58. Sert H., Hugentobler U., Karatekin O., Dehant V.
    2022, “Potential of UT1–UTC transfer to the Galileo constellation using onboard VLBI transmitters.”, Journal of Geodesy, 96, 83, DOI: 10.1007/s00190-022-01675-0.
  59. Gillet, N., Gerick, F., Jault, D., Schwaiger, T., Aubert, J., Istas, M.
    2022, “Satellite magnetic data reveal interannual modes in Earth’s core.”, PNAS, 119(13), Id. E2115258119, DOI: 10.1073/pnas.2115258119.
  60. Rekier J.
    2022, “Free Core Nutation and Its Relation to the Spin-over Mode.”, The Planetary Science Journal, 3, 6, 133, DOI: 10.3847/PSJ/ac6ce2.
  61. Delforge D., de Viron O., Durand F., and Dehant V.
    2022, “The Global Patterns of Interannual and Intraseasonal Mass Variations in the Oceans from GRACE and GRACE Follow-on records.”, Remote sensing, 14, 1861, 1-12, DOI: 10.3390/rs14081861.
  62. Dehant V., Mandea M., Cazenave A. et al.
    2022, “Guest Editorial: International Space Science Institute (ISSI) Workshop on Probing Earth’s Deep Interior Using Space Observations Synergistically.”, Surveys in Geophysic, 43, 1-3, DOI: 10.1007/s10712-022-09696-2.
  63. Gillet N., Gerick F., Angappan R., Jault D.
    2022, “Correction to: A Dynamical Prospective on Interannual Geomagnetic Field Changes.”, Surveys in Geophysic, 43, 1263-1264, DOI: 10.1007/s10712-022-09714-3.
  64. Gillet N., Gerick F., Angappan R., Jault D.
    2022, “A Dynamical Prospective on Interannual Geomagnetic Field Changes.”, Surveys in Geophysic, 43, 71-105, DOI: 10.1007/s10712-021-09664-2.
  65. Chen, J., Cazenave A., Dahle C., Llovel W., Panet I., Pfeffer J., Moreira L.
    2022, “Applications and challenges of GRACE and GRACE Follow‑On satellite gravimetry.”, Surveys in Geophysics, DOI: 10.1007/s10712-021-09685-x.
  66. Lesur, V., Gillet N., Hammer M.D., Mandea M.
    2022, “Rapid variations of Earth’s core magnetic field.”, Surveys in Geophysics, DOI: 10.1007/s10712-021-09662-4.
  67. Dehant V., Campuzano S.A., De Santis A., and van Westrenen W.
    2022, “Correction to: Structure, materials and processes in the Earth's core and mantle.”, Surveys in Geophysic, in S.I.: Probing Earth’s Deep Interior using Space Observations Synergistically, DOI: 10.1007/s10712-022-09706-3.
  68. Dehant V., Campuzano S.A., De Santis A., and van Westrenen W.
    2022, “Structure, materials and processes in the Earth's core and mantle.”, Surveys in Geophysic, in S.I.: Probing Earth’s Deep Interior using Space Observations Synergistically, DOI: 10.1007/s10712-021-09684-y.
  69. Rekier J., Chao B.F., Chen J., Dehant V., Rosat S., Zhu P.
    2022, “Earth’s Rotation: Observations and Relation to Deep Interior.”, Surveys in Geophysic, in S.I.: Probing Earth’s Deep Interior using Space Observations Synergistically, DOI: 10.1007/s10712-021-09669-x.
  70. Le Bars M., Barik A., Burmann F., Lathrop D.P., Noir J., Schaeffer N., and Triana S.A.
    2022, “Gravity Variations and Ground Deformations Resulting from Core Dynamics.”, Surveys in Geophysic, in S.I.: Probing Earth’s Deep Interior using Space Observations Synergistically, DOI: 10.1007/s10712-021-09681-1.

  71. 2021

  72. Triana S.A., Dumberry M., Cébron D., Vidal J., Trinh A., Gerick F., Rekier J.
    2021, “Core Eigenmodes and their Impact on the Earth’s Rotation.” Surveys in Geophysic, DOI: 10.1007/s10712-021-09668-y.
  73. Dumberry M., and Mandea M.
    2021, “Gravity variations and ground deformations resulting from core dynamics.”, Surveys in Geophysics, DOI: 10.1007/s10712-021-09656-2.
  74. Moreira L., Cazenave A., Barnoud A., and Chen J.
    2021, “Sea-level fingerprints due to present-day water mass redistribution in observed sea-level data.”, Remote Sens., 13, 4667, DOI: 10.3390/rs13224667.
  75. Marti, F., Blazquez A., Meyssignac B., Ablain M., Barnoud A., Pfeffer J., Jugier R., Fraudeau R., Jugier R., Chenal J., Larnicol G., Pfeffer J., Restano M., Benveniste J.
    2021, “Monitoring the Ocean Heat Content and the Earth Energy imbalance from space altimetry and space gravimetry.”, Earth Syst. Sci. Data, 14(1), 229-249, DOI: 10.5194/essd-14-229-2022.
  76. Barnoud, A., Pfeffer J., Guérou A., Frery M.-L., Siméon M., Cazenave A., et al.
    2021, “Contributions of altimetry and Argo to non-closure of the global mean sea level budget since 2016.”, Geophysical Research Letters, 48, e2021GL092824, DOI: 10.1029/2021GL092824.
  77. Pfeffer J., Cazenave A., and Barnoud A.
    2021, “Analysis of the interannual variability in satellite gravity solutions: detection of climate modes fingerprints in water mass displacements across continents and oceans.”, Clim. Dyn., DOI: 10.1007/s00382-021-05953-z.
  78. Triana S.A., Trinh A., Rekier J., Zhu P., and Dehant V.
    2021, “The viscous and Ohmic damping of the Earth’s Free Core Nutation.”, J. Geophys. Res., 126, Id. e2020JB021042, DOI: 10.1029/2020JB021042.
  79. Zhu P., Triana S.A., Rekier J., Trinh A., and Dehant V.
    2021, “Quantification of corrections for the main lunisolar nutation components and analysis of the free core nutation from VLBI-observed nutation residuals.”, Journal of geodesy, 95, 57, DOI: 10.1007/s00190-021-01513-9.
  80. Cazenave A., Chen J. L., “Ramillien G.
    2021, “Gravity Field, Temporal Variations from Space Techniques.”, In: Encyclopedia of Solid Earth Geophysics, part of Encyclopedia of Earth Sciences Series, Gupta, H.K. (eds), Springer, DOI: 10.1007/978-3-030-58631-7_96.
  81. 2020

  82. Mandea M., Isac A.
    2020, “Geomagnetic Field, Measurement Techniques.”, In: Gupta H. (eds), Encyclopedia of Solid Earth Geophysics, Encyclopedia of Earth Sciences Series, Springer, Cham, DOI: 10.1007/978-3-030-10475-7_117-1.
  83. Mandea M., Gaina C., Lesur V.
    2020, “Magnetic Modeling, Theory, and Computation.”, In: Gupta H.K. (eds), Encyclopedia of Solid Earth Geophysics, Encyclopedia of Earth Sciences Series, Springer, Cham, DOI: 10.1007/978-3-030-10475-7_232-1.
  84. Mandea M.
    2020, “The Core-Mantle Boundary as seen by Satellite Observations.”, J. Geol. Soc. India, 95, 547-550, DOI: 10.1007/s12594-020-1480-6.
  85. Mandea M., Dehant V., Cazenave A.
    2020, “GRACE Satellite Gravimetry for deep interior.”, Special issue on `GRACE and Geosciences´, Eds. Lucia Seoane and Guillaume Ramillien, Remote Sensing, 12(24), 4198, DOI: 10.3390/rs12244186.

Publications in Proceedings, including extended and published abstracts

    2025

  1. Pinheiro K., Mandea M., Dehant V., Cazenave A., Triana S.A., Gillet N.
    2025, “Outreach activities in the GRACEFUL project.”, Proc. EPSC-DPS Joint Meeting 2025, IASPEI-IAGA Joint Scientific Meeting 2025, J08P-095, Lisbon, Portugal, 31 August-5 September 2025.
  2. Sert H., Karatekin O., and Dehant V.,
    2025, “Comparison of near-field delay models for Earth-orbiting satellites.”, EGU 2025 General Assembly, EGU25-12493, Tue, 29 Apr, Poster X1.90, Session G2.2 on ‘Terrestrial Reference Frame: determination, improvements and usage’, Vienna, Austria, 28 April- 2 May 2025.
  3. Dehant V., Mandea M., and Cazenave A.
    2025, “Synergy Grant GRACEFUL and Repercussions for Society.”, EGU 2025 General Assembly, EGU25-19573, Fri, 02 May, poster X4.194, Session EOS4.1 on ‘Strengthening Policy Through Science: Insights from the Interface’, Vienna, Austria, 28 April- 2 May 2025.
  4. Cheng Y., Dehant V., Bizouard C., and Rivoldini A.
    2025, “Basic Earth Parameters from VLBI observations: an update.”, EGU 2025 General Assembly, EGU25-20278, Mon, 28 Apr, oral presentation, Session G3.2 on ‘Earth Rotation: Theoretical aspects, temporal variability, physical interpretation, and prediction’, Vienna, Austria, 28 April- 2 May 2025.
  5. Chicot G., Dehant V., Laariara D., Mandea M., and Shih S.-A.
    2025, “Revisiting core contributions to Length-of-day variations.”, EGU 2025 General Assembly, EGU25-19103, Tue, 29 Apr, Poster X1.111, Session G3.2 on ‘Earth Rotation: Theoretical aspects, temporal variability, physical interpretation, and prediction’, Vienna, Austria, 28 April- 2 May 2025.
  6. Seuren F., Triana S.A., Rekier J., Dehant V., and Van Hoolst T.
    2025, “The influence of a stably stratified layer on the Earth's outer core waves.”, EGU 2025 General Assembly, EGU25-19659, Tue, 29 Apr, oral presentation, Session GD8.4 on ‘Earth and Planetary cores’, Vienna, Austria, 28 April- 2 May 2025.
  7. Triana S.A., Rekier J., Barik A., Gerick F., Seuren F., and Dehant V.
    2025, “A numerical model of torsional Alfven eigenmodes in the Earth's core.”, EGU 2025 General Assembly, EGU25-18135, Mon, 28 Apr, Poster X2.18, Session GD8.4 on ‘Earth and Planetary cores’, Vienna, Austria, 28 April- 2 May 2025.
  8. Balasis G., De Santis A., Papadimitriou C., Boutsi A. Z., Cianchini G., Giannakis O., Potirakis S. M., and Mandea M.
    2025, “Swarm Investigation of Ultra-Low-Frequency (ULF) Pulsation and Plasma Irregularity Signatures Potentially Associated with Geophysical Activity.”, EGU 2025 General Assembly, EGU25-13661, Wed, 30 Apr, Poster X3.58, Session EMRP2.1 on ‘Open Session in Geomagnetism’, Vienna, Austria, 28 April- 2 May 2025.
  9. Gaugne C., Panet I., Mandea M., Greff M., and Rosat S.
    2025, “GRACE observations of rapid mass variations at the core-mantle boundary during deep mantle phase transitions in interaction with core flow.”, EGU 2025 General Assembly, EGU25-8808, Mon, 28 Apr, Poster X2.17, Session GD8.2 on ‘Earth and Planetary cores’, Vienna, Austria, 28 April- 2 May 2025.
  10. Leclercq L., Cazenave A., Léger F., Birol F., Nino F., and Legeais J.-F.
    2025, “Sea level variations at the world coastlines over the past two decades from reprocessed satellite altimetry.”, EGU 2025 General Assembly, EGU25-113, Mon, 28 Apr, oral presentation, Session CL4.17 on ‘Understanding and assessing sea level changes: from global to local, from past to future’, Vienna, Austria, 28 April- 2 May 2025.
  11. Rosat, S., Lecomte H., Mandea M.
    2025, “Constraints on Earth’s core processes by space gravimetry.”, Proc. SF2A 2023, M. N’Diaye, A. Siebert, N. Lagarde, O. Venot, K. Bailli´e, M. B´ethermin, E. Lagadec, J. Malzac, J. Richard (eds), 4 pages, 343-346, Strasbourg, France, June 20-23, 2023.
  12. Prajapati R., Arora K. Mandea, M.
    2025, “A ~6-Year Cyclicity in Solar Activity, Earth’s Rotation, and Geomagnetic Field Variations: Evidence for a Coupled Mechanism.”, Proc. IASPEI-IAGA Joint Scientific Meeting 2025, Session A03 on Planetary magnetic fields and secular variations on all temporal and spatial scales, A03p-013, Abstract AS25-0671, Lisbon, Portugal, 31 August-5 September 2025.
  13. Jault D., Personnettaz P., Gillet N., Lepage T., Schaeffer N., Firsov I., Mandea M.
    2025, “Magnetic boundary layer in non-slip geodynamo simulations with insulating mantle.”, Proc. IASPEI-IAGA Joint Scientific Meeting 2025, Session A03 on Planetary magnetic fields and secular variations on all temporal and spatial scales, Abstract AS25-0768, Lisbon, Portugal, 31 August-5 September 2025.
  14. Rogers H., Gillet N., Aubert J., Personnettaz P., Mandea M.
    2025, “Utilising data assimilation to study the impact of geodynamo priors and geomagnetic data on inverted core surface flows.”, Proc. IASPEI-IAGA Joint Scientific Meeting 2025, Session J04 on Data assimilation and M chine Learning: Challenges and Leveraging New Opportunities, Abstract AS25-0524, Lisbon, Portugal, 31 August-5 September 2025.
  15. Rosat, S., Lecomte H., Pfeffer J., Gillet N., Dumberry M., Mandea M.
    2025, “Geodetic constraints on sub-decadal dynamical processes of the Earth’s deep interior.”, Proc. IASPEI-IAGA Joint Scientific Meeting 2025, Session J09 on Remote sensing of decadal dynamical processes of the Earth’s interior, Abstract AS25-0592, Lisbon, Portugal, 31 August-5 September 2025.
  16. Mandea M., Dehant V. Cazenave A., Dumberry M., Mandea M.
    2025, “Decoding Multi-Year Oscillations in Earth's Deep Interior Dynamics.”, Proc. IASPEI-IAGA Joint Scientific Meeting 2025, Session J09 on Remote sensing of decadal dynamical processes of the Earth’s interior, Abstract AS25-1062, Lisbon, Portugal, 31 August-5 September 2025.
  17. Gerick F.
    2025, “Modelling and observing hydromagnetic modes.”, Proc. IASPEI-IAGA Joint Scientific Meeting 2025, Session A03 on Planetary magnetic fields and secular variations on all temporal and spatial scales, Abstract AS25-0251, Lisbon, Portugal, 31 August-5 September 2025.
  18. Pinheiro K., Koch J., del Puy Papí Isaba M., Ödalen M., Paredes Marino J., Dembélé M., Li J., Niezabitowska D.
    2025, “Building an Inclusive Early-Career Scientists Network within IUGG.”, Proc. IASPEI-IAGA Joint Scientific Meeting 2025, Session J08/S23b on Innovation in Geoscience Education and Outreach/Seismology at High-school Classrooms, Abstract AS25-1170, invited talk, Lisbon, Portugal, 31 August-5 September 2025.
  19. Pinheiro K., Mandea M., Dehant V., Cazenave A., Triana S.A., Gillet N.
    2025, “Outreach activities in the GRACEFUL project.”, Proc. IASPEI-IAGA Joint Scientific Meeting 2025, J08P-095, Lisbon, Portugal, 31 August-5 September 2025.
  20. Folgueira M., Dehant V., Puica M., Rekier J. Van Hoolst T.
    2025, “Effect of a Non-Hydrostatic Core-Mantle Boundary on Earth's and Mars' Rotational Dynamics.”, Proc. IAU Symposium IAUS 401 on `Advancing Reference Systems, Ephemeris, and Standards: From the Earth and the Moon to Solar System Bodies', La Plata, Argentina, 4-9 August 2025.
  21. Bizouard C., Zotov L., Dehant V., Folgueira M.
    2025, “Lights and shadows on the resonant modes of the Earth rotation axis.”, Proc. IAU Symposium IAUS 401 on `Advancing Reference Systems, Ephemeris, and Standards: From the Earth and the Moon to Solar System Bodies', La Plata, Argentina, 4-9 August 2025.
  22. Sert H., Karatekin O., Dehant V.
    2025, “Comparison of near-field delay models for Earth-orbiting satellites.”, Proc. EGU 2025 General Assembly, EGU25-12493, Tue, 29 Apr, Poster X1.90, Session G2.2 on ‘Terrestrial Reference Frame: determination, improvements and usage’, Vienna, Austria, 28 April- 2 May 2025.
  23. Dehant V., Mandea M., Cazenave A.
    2025, “Synergy Grant GRACEFUL and Repercussions for Society.”, Proc. EGU 2025 General Assembly, EGU25-19573, Fri, 02 May, poster X4.194, Session EOS4.1 on ‘Strengthening Policy Through Science: Insights from the Interface’, Vienna, Austria, 28 April- 2 May 2025.
  24. Cheng Y., Dehant V., Bizouard C., Rivoldini A.
    2025, “Basic Earth Parameters from VLBI observations: an update.”, Proc. EGU 2025 General Assembly, EGU25-20278, Mon, 28 Apr, oral presentation, Session G3.2 on ‘Earth Rotation: Theoretical aspects, temporal variability, physical interpretation, and prediction’, Vienna, Austria, 28 April- 2 May 2025.
  25. Chicot G., Dehant V., Laariara D., Mandea M., Shih S.-A.
    2025, “Revisiting core contributions to Length-of-day variations.”, Proc. EGU 2025 General Assembly, EGU25-19103, Tue, 29 Apr, Poster X1.111, Session G3.2 on ‘Earth Rotation: Theoretical aspects, temporal variability, physical interpretation, and prediction’, Vienna, Austria, 28 April- 2 May 2025.
  26. Seuren F., Triana S.A., Rekier J., Dehant V., Van Hoolst T.
    2025, “The influence of a stably stratified layer on the Earth's outer core waves.”, Proc. EGU 2025 General Assembly, EGU25-19659, Tue, 29 Apr, oral presentation, Session GD8.4 on ‘Earth and Planetary cores’, Vienna, Austria, 28 April- 2 May 2025.
  27. Triana S.A., Rekier J., Barik A., Gerick F., Seuren F., Dehant V.
    2025, “A numerical model of torsional Alfven eigenmodes in the Earth's core.”, Proc. EGU 2025 General Assembly, EGU25-18135, Mon, 28 Apr, Poster X2.18, Session GD8.4 on ‘Earth and Planetary cores’, Vienna, Austria, 28 April- 2 May 2025.
  28. Balasis G., De Santis A., Papadimitriou C., Boutsi A. Z., Cianchini G., Giannakis O., Potirakis S. M., Mandea M.
    2025, “Swarm Investigation of Ultra-Low-Frequency (ULF) Pulsation and Plasma Irregularity Signatures Potentially Associated with Geophysical Activity.”, Proc. EGU 2025 General Assembly, EGU25-13661, Wed, 30 Apr, Poster X3.58, Session EMRP2.1 on ‘Open Session in Geomagnetism’, Vienna, Austria, 28 April- 2 May 2025.
  29. Gaugne C., Panet I., Mandea M., Greff M., Rosat S.
    2025, “GRACE observations of rapid mass variations at the core-mantle boundary during deep mantle phase transitions in interaction with core flow.”, Proc. EGU 2025 General Assembly, EGU25-8808, Mon, 28 Apr, Poster X2.17, Session GD8.2 on ‘Earth and Planetary cores’, Vienna, Austria, 28 April- 2 May 2025.
  30. Leclercq L., Cazenave A., Léger F., Birol F., Nino F., Legeais J.-F.
    2025, “Sea level variations at the world coastlines over the past two decades from reprocessed satellite altimetry.”, Proc. EGU 2025 General Assembly, EGU25-113, Mon, 28 Apr, oral presentation, Session CL4.17 on ‘Understanding and assessing sea level changes: from global to local, from past to future’, Vienna, Austria, 28 April- 2 May 2025.

  31. 2024

  32. Dehant V., Rekier J., Puica M., Folgueira M., Van Hoolst T.
    2024, “Effects of topographic coupling at core-mantle boundary in rotation and orientation changes of the Earth.", EGU 2024, Session GD 3.3 on `Earth Rotation: Theoretical aspects, temporal variability, physical interpretation, and prediction´, Tue. 16 April 16:15-18:00, Poster presentation, Vienna, Austrian, 15-19 April 2024.
  33. Dehant V.
    2024, “Rotation of Mars and the Earth revealing their core properties.", EGU 2024, Jean Dominique Cassini Medal Lecture (Session MAL4) by Veronique Dehant, Convener Irina M. Artemieva, Thu. 18 Apr, 12:45-13:45, Room E1, Invited oral presentation, Vienna, Austrian, 15-19 April 2024.
  34. Chicot G., Dehant V., de Viron O.
    2024, “Correlation of Magnetic Field Dynamics and Atmosphere for the study of the quasi six-year oscillation from Earth's core.", EGU 2024, Session ST3.4 on `Open Session on the Ionosphere and Thermosphere´, Thu. 18 Apr, 16:15-18:00, Poster presentation, Vienna, Austrian, 15-19 April 2024.
  35. Mandea M., Cazenave A., Dehant V.
    2024, “Probing the deep Earth interior by a synergistic use of magnetic and gravity fields, and Earth's rotation.", EGU 2024, Session GD 8.1 on `Earth's and planetary cores: structure, dynamics and evolution´, Tue. 16 April 10:45-12:30, Pico presentation, Vienna, Austrian, 15-19 April 2024.
  36. Personnettaz P., Schaëffer N., Cébron D., Mandea M.
    2024, "Fluid response to the inner core’s translational oscillations.", Rencontre du Non-Linéaire 2024, Oral and Poster Presentation, Université Paris Cité, 18-20 mars 2024.
  37. Personnettaz P., Monville R., Schaëffer N., Cébron D., Mandea M.
    2024, “Beyond spherical boundaries in deep fluid layers of planets.”, 1st European Fluid Dynamics Conference (EFDC1), Oral Presentation, Session A12_01: Geophysical and Astrophysical Turbulence, Geophysical Fluid Dynamics, Aachen, Germany, 16-20 September 2024.
  38. Pfeffer J., Cazenave A.A., Dehant V., Mandea M., Rosat S., Gillet N., Jault D., Nataf H.C.
    2024, “Potential links between internal and external geodynamics at periods around 6 years.”, GRACE SWT 2024, oral presentation, Potsdam, Germany, October 8-10, 2024.
  39. Gaugne C., Panet I., Greff M., Mandea M., Rosat S.
    2024, “Rapid mass changes at the core-mantle boundary originating from the deep mantle as seen by GRACE mission.”, Oral, Session ‘Properties, Dynamics, and Evolution of Terrestrial Planetary Cores: Interdisciplinary Perspectives’, DI12A-06, AGU, Washington, USA, 9 December 2024.
  40. Panet I., Bonvalot S., Bouih M., Gaugne C., Greff M., Lemoine J.M., Longuevergne L., Mandea M., Narteau C., Remy D., Romanowicz B.A., Greff M.
    2024, “Slow to fast mass redistributions in the Earth’s mantle from satellite gravity.”, Poster, Session ‘Properties, Dynamics, and Evolution of Terrestrial Planetary Cores: Interdisciplinary Perspectives’, DI12A-3059, AGU, Washington, USA, 12 December 2024.
  41. Dehant V., Rekier J., Folgueira López M., Puica M., Van Hoolst T.
    2024, “Effect of a non-hydrostatic core-mantle boundary on the nutations of the Earth and Mars.”, Poster, Session ‘Oscillations in Internal Fluid Layers of Planets, Moons, and Stars ‘, P53A-3029, AGU, Washington, USA, 13 December 2024.
  42. Triana S.A., Rekier J., Barik A., Gerick F., Dehant V.
    2024, “Torsional Alfvén modes in the Earth's core: A numerical model.”, Poster, Session ‘Oscillations in Internal Fluid Layers of Planets, Moons, and Stars’, P53A-3030, AGU, Washington, USA, 13 December 2024.
  43. Rekier J., Barik A., Buffett B.
    2024, “Topographic torque at the Core-Mantle Boundary.”, Poster, Session ‘Deep Connections: Structures, Dynamics, and Interactions at Earth’s Core-Mantle Boundary’, DI23A-3173, AGU, Washington, USA, 10 December 2024.
  44. Pfeffer J., Cazenave A., Mandea M., Dehant V., and Barnoud A.
    2020, “The GRACEFUL project: probing the Earth’s deep interior with satellite observations of the gravity field, magnetic field and Earth’s rotation.”, GRACE/GRACE-FO Science Team Meeting 2020, virtual, 26-29 October 2020.
  45. Rekier J., Triana S.A., and Dehant V.
    2020, “Planetary inertial modes and their relation to nutations.”, session TP2 – Planetary Dynamics: Shape, Gravity, Orbit, Tides, and Rotation from Observations and Models, 21 September-9 October 2020, extended abstract, EPSC2020-853, 2 pages.
  46. Dehant V., Triana S.A., Rekier J., Trinh A., Zhu P., Laguerre R., Houliez A., and Van Hoolst T.
    2020, “Progress in understanding nutations.”, in: Proc. Journées Systèmes de Référence Spatio-Temporels 2019, on ‘Astrometry, Earth Rotation, and Reference Systems in the GAIA era’, Paris, France, 7-8 October, 2019, pp. 231-234.
  47. Pfeffer J., Cazenave A., Mandea M., Dehant V., and Barnoud A.
    2020, “The GRACEFUL project: probing the Earth’s deep interior with satellite observations of the gravity field, magnetic field and Earth’s rotation.”, GRACE/GRACE-FO Science Team Meeting 2020, GSTM2020-23, virtual, 26-29 October 2020.
  48. Dehant V., Mandea M., Cazenave A., Triana S.A., Rekier J., and Zhu P.
    2020, “GRACEFUL: Probing the deep Earth interior by synergistic use of observations of the magnetic and gravity fields, and of the rotation of the Earth.”, Proceedings AGU Fall Meeting, 1-17 December 2020, Session DI001 – Probing the Earth deep interior through gravity, magnetic and Earth’s rotation observations.
  49. Dehant V., Le Maistre S., Rivoldini A., Baland R.M., Filice V., Karatekin Ö., Péters M.J., Van Hoolst T., and Yseboodt M.
    2020, “Geodesy at Mars: from gravity, rotation and tides to the deep interior of the red planet.”, Proceedings AGU Fall Meeting, 1-17 December 2020, Session P081, Geodesy at Mars: from gravity, rotation and tides to the deep interior of the red planet.
  50. Sert H., Hugentobler U., Dehant V., and Karatekin Ö.
    2020, “UT1-UTC determination with an onboard VLBI transmitter on Galileo satellites.”, Proceedings AGU Fall Meeting, 1-17 December 2020, Session G025 – Reference Frames: Determination, Usage, and Application.
  51. Houliez A., Laguerre R., Cebron D., Rekier J., and Dehant V.
    2020, “Steady flows in the core of precessing planets: effects of the geometry and an uniform magnetic field.”, Proceedings AGU Fall Meeting, 1-17 December 2020, Session NG008 Nonlinear Geophysics/Geophysical Fluid Dynamics.
  52. Rekier J., Triana S.A., Trinh A., and Dehant V.
    2020, “Planetary inertial modes and their relation to nutations.”, Proceedings AGU Fall Meeting, 1-17 December 2020, Session DI001 – Probing the Earth deep interior through gravity, magnetic and Earth’s rotation observations.
  53. Triana S.A., Rekier J., Trinh A., Zhu P., and Dehant V.
    2020, “The viscous and Ohmic damping of the Earth's Free Core Nutation.”, Proceedings AGU Fall Meeting, 1-17 December 2020, Session DI006 – Exploring the Earth’s Core: Constraints on the Earth’s Metallic Heart from Multidisciplinary Approaches.
  54. Zhu P., Bodranghien F., and Dehant V.
    2020, “Instability of Earth’s rotation at the decadal time resolution.”, Proceedings AGU Fall Meeting, 1-17 December 2020, Session DI001 – Probing the Earth deep interior through gravity, magnetic and Earth’s rotation observations.
  55. Trinh A., Van Hoolst T., and Matsuyama I.
    2020, “The biennial libration of Io.”, Proceedings AGU Fall Meeting, 1-17 December 2020, Session P025-0001 – Geology and Geophysics of Satellites and Small Bodies: To Io and Beyond.
  56. Cazenave A.
    2020, “Coastal sea level trends over 2002-2018 from reprocessed Jason-1, 2, 3 satellite altimetry.”, Proceedings AGU Fall Meeting, 1-17 December 2020, Session G010 – Observing Geophysical Signals in the Climate System Through Geodesy eLightning.
  57. Van Hoolst T., Baland R.-M., Trinh A., Yseboodt M., and Nimmo F.
    2020, “The Librations, Tides, and Interior Structure of Io.”, Proceedings AGU Fall Meeting, 1-17 December 2020, Session P031-02 – Geology and Geophysics of Satellites and Small Bodies: To Io and Beyond.
  58. Moreira L., Boubacar Dieng H., Cazenave A., and Palanisamy H.
    2020, “Interannual variability in the rate of the global mean sea level rise.”, Proceedings AGU Fall Meeting, 1-17 December 2020, Session G010 – Observing Geophysical Signals in the Climate System Through Geodesy eLightning.

  59. 2023

  60. Le Maistre S., Rivoldini A., Caldiero A., Yseboodt M., Baland R.-M., Beuthe M., Van Hoolst T., Dehant V., Folkner W., Buccino D., Kahan D., Marty J.-C., Antonangeli D., Badro J., Drilleau M., Konopliv A., Péters M.-J., Plesa A.C., Samuel H., Tosi N., Lognonné P., Panning M., and Banerdt W.B.
    2023, “Detection of the Liquid Core Signature in Mars Nutations from InSight-RISE Data: Implications for Mars Interior Structure.", Proceedings 54th Lunar and Planetary Science Conference 2023, Session `The InSight Mission's Legacy´, The Woodlands, Texas, USA, 3-17 March 2023, extended abstract, LPI Contrib. No. 2806, 1611.
  61. Pfeffer J., Cazenave A., Rosat S., Mandea M., Dehant V., Moreira L., and Barnoud A.
    2023, “Detections of a 6-year cycle in the Earth system.”, Proceedings EGU General Assembly, 23-28 April 2023, Session G6.1 – Open Session in Geodesy with a Focus on Satellite Altimetry, EGU23-7746, Vienna, Austria and Virtual, 23-28 April 2023, DOI: 10.5194/egusphere-egu23-7746.
  62. Sert H., Hugentobler U., Karatekin Ö., and Dehant V.
    2023, “Optimal geometry for rotation transformation using VLBI-GNSS space-tie onboard Galileo satellites.”, Proceedings EGU General Assembly, 23-28 April 2023, Session G2.2 – Terrestrial Reference Frame: data analysis, evaluation and applications, EGU23-8773, Vienna, Austria and Virtual, 23-28 April 2023, DOI: 10.5194/egusphere-egu23-8773.
  63. Karatekin Ö., Delva P., Altamimi Z., Blazquez A., Blossfeld M., Böhm J., Bonnefond P., Boy J.-P., Bruinsma S., G Bury., Chatzinikos M., Couhert A., Courde C., Dach R., Dehant V., Dell’Agnello S., Elgered G., Enderle W., Exertier P., Glaser S., Haas R., Huang W., Hugentobler U., Jäggi A., Lemoine F., Le Poncin-Lafitte C., Lunz S., Männel B., Mercier F., Métivier L., Meyssignac B., Müller J., Nothnagel A., Perosanz F., Rietbroek R., Rothacher M., Sert H., Schuh H., Sosnica K., Testani P., Ventura-Traveset J., Wautelet G., and Zajdel R.
    2023, “ESA's GENESIS mission: Advancing terrestrial reference systems by co-location of geodetic techniques in space.”, Proceedings EGU General Assembly, 23-28 April 2023, Session G2.2 – Terrestrial Reference Frame: data analysis, evaluation and applications, EGU23-9320, Vienna, Austria and Virtual, 23-28 April 2023, DOI: 10.5194/egusphere-egu23-9320.
  64. Triana S.A., Rekier J., Gerick F., and Dehant V
    2023, “Low frequency eigenmodes of the Earth's fluid core.”, Proceedings EGU General Assembly, 23-28 April 2023, Session GD8.1 – Earth's and planetary cores: structure, dynamics and evolution, EGU23-8209, Vienna, Austria and Virtual, 23-28 April 2023, DOI: 10.5194/egusphere-egu23-8209.
  65. Shih, S.A., Triana S.A., and Dehant V.
    2023, “Turbulent Dissipation in the Boundary Layer of Precession Driven Flow in a Sphere.”, Proceedings EGU General Assembly, 23-28 April 2023, Session GD8.1 – Earth's and planetary cores: structure, dynamics and evolution, EGU23-10448, Vienna, Austria and Virtual, 23-28 April 2023, DOI: 10.5194/egusphere-egu23-10448.
  66. Rogers H., Gillet N., Hammer M., Finlay C., and Mandea M.
    2023, “Using SOLA for investigating regional dynamics of flow at the top of the outer core.”, Proceedings EGU General Assembly, 23-28 April 2023, Session EMRP3.5 – Paleomagnetism, Rock Magnetism and Environmental Magnetism, EGU23-3416, Vienna, Austria and Virtual, 23-28 April 2023, DOI: 10.5194/egusphere-egu23-3416.
  67. Cazenave A.A., Pfeffer J., Dehant V., Mandea M.
    2023, “A 6-year cycle in the length of day and in the surface fluid envelopes.”, AGU Fall meeting 2023, Session G004 ‘Climate and geophysical fluid signals in Earth rotation parameters - variability and prediction’, Abstract Id. 1279531, San Francisco, United States, 11-15 December 2023.
  68. Pfeffer J., Cazenave A.A., Rosat S., Moreira L., Mandea M., Dehant V.
    2023, “Are internal and external geodynamics linked at a 6-year period?”, AGU Fall meeting 2023, Session G005 ‘Earth’s Deep Interior Seen by Gravity, Magnetic and Earth’s Rotation Observations’, Abstract Id. 4388237, San Francisco, United States, 11-15 December 2023.
  69. Dehant V., Mandea M., Cazenave A.A.
    2023, “GRACEFUL: Probing the deep Earth interior by synergistic use of observations of the magnetic and gravity fields, and of the rotation of the Earth.”, AGU Fall meeting 2023, Session G005 ‘Earth’s Deep Interior Seen by Gravity, Magnetic and Earth’s Rotation Observations’, Abstract Id. 1299928, San Francisco, United States, 11-15 December 2023.
  70. Triana S.A., Rekier J., Gerick F., Dehant V.
    2023, “Low Frequency Eigenmodes of the Earth's Fluid Core.”, AGU Fall meeting 2023, Session G005 ‘Earth's Deep Interior Seen by Gravity, Magnetic and Earth’s Rotation Observations’, Abstract Id. 1362706, Poster DI23B-0038, San Francisco, United States, 11-15 December 2023.
  71. Barik A., Triana S.A., Rekier J.
    2023, “Kore : A spectral anelastic MHD eigenvalue code for rotating fluids in spherical geometries.”, AGU Fall meeting 2023, Session P ‘Oscillations in Internal Fluid Layers of Planets, Moons, and Stars’, Abstract Id. 1313606, Poster P23G-3119, San Francisco, United States, 11-15 December 2023.
  72. Rekier J., Triana S.A., Barik A.
    2023, “Amplified tidal response in the liquid layers of planets and stars: methods and challenges.”, AGU Fall meeting 2023, Session P ‘Oscillations in Internal Fluid Layers of Planets, Moons, and Stars’, Abstract Id. 1383286, Poster P23G-3120, San Francisco, United States, 11-15 December 2023.
  73. Seuren F., Blume C., Rekier J., Triana S.A.
    2023, “The return of tesseral Rossby waves in a rotating sphere due to stable stratification.”, AGU Fall meeting 2023, Session P ‘Oscillations in Internal Fluid Layers of Planets, Moons, and Stars’, Abstract Id. 1308665, Poster P23G-3113, San Francisco, United States, 11-15 December 2023.
  74. Lecomte H., Rosat S., Mandea M.
    2023, “Comparison of Gap-Filling Temporal Methods to Improve GRACE and GRACE-FO Time Series.”, AGU Fall meeting 2023, Session G ‘GRACE-FO and Beyond: Current Status, Analysis, and Method Advances and Future Missions’ , Abstract Id. 1386940, Poster G21B-0472, San Francisco, United States, 11-15 December 2023.
  75. Kang WeiLim, Schaeffer N., Personnettaz P., Rogers H., Frasson T., Mandea M.
    2023, “Investigating secular variations in geodynamo models with lateral variations in electrical conductivity at the core-mantle boundary.”, AGU Fall meeting 2023, Session D ‘Of Cores We Can: Interdisciplinary Studies of Earth and Planetary Cores’ , Abstract Id. 1309999, Poster DI31C-06, San Francisco, United States, 11-15 December 2023.

  76. 2022

  77. Le Maistre S., Rivoldini A., Caldiero A., Yseboodt M., Baland R.-M., Beuthe M., Van Hoolst T., Dehant V., Folkner W., Buccino D., Kahan D., Marty J.-C., Antonangeli D., Badro J., Drilleau M., Konopliv A., Péters M.-J., Plesa A.C., Samuel H., Tosi N., Lognonné P., Panning M., and Banerdt W.B.
    2022, “The deep interior of Mars from nutation measured by InSight RISE.”, Proceedings EGU 2022 General Assembly, PS4.5 – Mars Science and Exploration, abstract number EGU22-12428, Vienna, Austria, 23-28 May 2022, DOI: 10.5194/egusphere-egu22-12428.
  78. Karatekin Ö., Dehant V., Ventura-Traveset J., Rothacher M., Delva P., Hugentobler U., and in alphabetic order: Altamimi Z., Boehm J., Couhert A., Flechtner F., Glaser S., Haas R., Jaeggi A., Maennel B., Perosanz F., Schuh H., and Sert H.
    2022, “GENESIS-1 mission for improved reference frames and Earth science applications.”, Proceedings EGU 2022 General Assembly, G2.3 – The Global Geodetic Observing System: Geodesy for Science and Society, abstract number EGU22-10616, Vienna, Austria, 23-28 May 2022, DOI: 10.5194/egusphere-egu22-10616.
  79. Seuren F., Triana S.A., Rekier J., Van Hoolst T., and Dehant V.
    2022, “The influence of a stratified core on Mercury's librations.”, Proceedings EGU 2022 General Assembly, GD3.1 – Earth's and planetary cores: structure, dynamics, evolution and their magnetic fields from numerical simulations and observations, abstract number EGU22-12178, Vienna, Austria, 23-28 May 2022, DOI: 10.5194/egusphere-egu22-12178.
  80. Dehant V.
    2022, “Gender in EU project.”, Proceedings EGU 2022 General Assembly, EOS3.1 – Promoting and supporting equality, diversity and inclusion in the geosciences, abstract number EGU22-7535, Vienna, Austria, 23-28 May 2022, DOI: 10.5194/egusphere-egu22-7535.
  81. Dehant V., Rekier J., Puica M., Folgueira M., Trinh A., and Van Hoolst T.
    2022, “Effects of topographic coupling at core-mantle boundary in rotation and orientation changes of the Earth.”, Proceedings EGU 2022 General Assembly, G3.5 – Earth Rotation: Theoretical aspects, temporal variability, physical interpretation, and prediction, abstract number EGU22-7481, Vienna, Austria, 23-28 May 2022, DOI: 10.5194/egusphere-egu22-7481.
  82. Rekier J.
    2022, “The Spin-Over Mode of freely rotating planets and its relation to their Free Core Nutation.”, Proceedings EGU 2022 General Assembly, GD3.1 – Earth's and planetary cores: structure, dynamics, evolution and their magnetic fields from numerical simulations and observations, abstract number EGU22-3972, Vienna, Austria, 23-28 May 2022, DOI: 10.5194/egusphere-egu22-3972.
  83. Seuren F., Rekier J., Triana S.A., Van Hoolst T.
    2022, “The core flow induced by Mercury’s libration: density stratification and magnetic fields.”, EPSC 2022 Meeting, Session TP1, EPSC2022-934, Granada, Spain, 18-23 September 2022, extended abstract, DOI: 10.5194/epsc2022-934.
  84. Le Maistre S., Dehant V., Baland R.-M., Beuthe M., Filice V., Goli M., Péters M.-J., Steenput B., Rivoldini A., Umit E., Van Hoolst T., Yseboodt M., and the LaRa team
    2022, “LaRa, an X-band coherent transponder ready to fly.”, EPSC 2022 Meeting, Session MITM12, EPSC2022-1169, Granada, Spain, 18-23 September 2022, extended abstract, DOI: 10.5194/epsc2022-1169.
  85. Rivoldini A., Le Maistre S., et al. including Dehant V.
    2022, “A view into the deep interior of Mars from nutation measured by InSight RISE.", EPSC 2022 Meeting, Session TP12 – Planetary Seismology and Geophysics, EPSC2022-1101, Granada, Spain, 18-23 September 2022, extended abstract, DOI: 10.5194/epsc2022-1101.
  86. Rekier J., Dehant V., and Triana S.A.
    2022, “Low frequency eigenmodes of the Earth's fluid core.”, Session DI32B, AGU Fall Meeting 2022, Chicago, USA, 12-16 December 2022, DI32B-0014, 1111500.
  87. Rekier J., Buffett B., Triana S.A., and Dehant V.
    2022, “Enhanced mechanical core-mantle coupling induced by a stably stratified layer at the top of the core.”, Session DI36A, AGU Fall Meeting 2022, Chicago, USA, 12-16 December 2022, DI36A-06, 1105456.
  88. Lecomte H., Rosat S., Mandea M., and Dumberry M.
    2022, “Observability of the Earth’s Core Signals and Geomagnetic Jerks in GRACE-based Gravity Field.”, Session DI32B, AGU Fall Meeting 2022, Chicago, USA, 12-16 December 2022, DI32B-0018, 1111500.
  89. Cazenave A., Pfeffer J., Moreira L., Mandea M., Dehant V., and de Viron O.
    2022, “A 6-7 year cycle in the Earth System.”, AGU Fall Meeting 2022, Chicago, USA, 12-16 December 2022, G16A-03, 1054471.
  90. Cazenave A., and the ESA CCI Coastal Sea level project
    2022, “Sea level along the world’s coastlines can be measured by a network of virtual altimetry stations.”, AGU Fall Meeting 2022, Chicago, 12-16 December 2022, OS45C-1210, 1143412.
  91. Han W., Zhang L., …, Cazenave A., …, and Xing W.
    2022, “Enhanced Sea Level Extremes in Coastal Indonesia during 2010-2017: Roles of Anthropogenic Forcing and Decadal Climate Variability.”, AGU Fall Meeting 2022, Chicago, 12-16 December 2022, GC56A-02, 1075166.
  92. Becker M., Marcos M., …, Cazenave A., …, and Ward P.
    2022, “An Overview of Asian Mega-Deltas: Forcing Factors, Responses, and Evolutions.”, AGU Fall Meeting 2022, Chicago, 12-16 December, 2022 OS56A-06, 1061314.
  93. Ponce de Leon Alvarez S., Gouzenes Y., Cazenave A., and Benveniste J.
    2022, “Revisiting the coastal sea level rise using altimetry and a high-resolution spectral wave model.”, AGU Fall Meeting 2022, Chicago, 12-16 December 2022, OS45C-1208, 1061254.
  94. Pfeffer J., Cazenave A., Barnoud A., Mandea M., Dehant V., de Viron O., Saraswati A., Zhu P.
    2022, “A 6-7 year cycle in the climate system.”, GRACE SWT 2022, GSTM2022-26, oral presentation, Potsdam, Germany, 18-20 October 2022.
  95. Lecomte H., Rosat S., Mandea M.
    2022, “Comparison of gap-filling temporal methods to improve GRACE and GRACE-FO time series.”, GRACE SWT 2022, GSTM2022-46, Potsdam, Germany, 18-20 October 2022.
  96. Barnoud A., Pfeffer J., Guérou A., Frery M.-L., Siméon M., Cazenave A.A., Chen Ji., Llovel W., Thierry V., Legeais J.-F., and Ablain M.
    2022, “Non-Closure of the Global Mean Sea Level Budget Since 2016: Contributions of Altimetry and Argo.”, Proc. 2022 Ocean Surface Topography Science Team Meeting, 2022 OSTST, 31 October-4 November 2022.

  97. 2021

  98. Triana A., Rekier J., Trinh A., Dehant V., and Zhu P.
    2021, “Ohmic and viscous damping of the Earth's Free Core Nutation.”, Proceedings EGU 2021, 19-30 April 2021, Session GD2.1 – Earth's core structure, dynamics and evolution: observations, models, experiments, EGU21-12492, DOI: 10.5194/egusphere-egu21-12492.
  99. Rekier J., Triana A., and Dehant V.
    2021, “Magneto-inertial waves and planetary rotation.”, Proceedings EGU 2021, 19-30 April 2021, Session EMRP2.12 – Planetary Magnetism and Core Processes, EGU21-11936, DOI: 10.5194/egusphere-egu21-11936.
  100. Gerick F., Jault D., and Noir J.
    2021, “Fast (non-)diffusive Quasi-Geostrophic Magneto-Coriolis Modes in the Earth's core.”, Proceedings EGU 2021, 19-30 April 2021, EGU21-2176, Session GD2.1, DOI: 10.5194/egusphere-egu21-2176.
  101. Barnoud A., Cazenave A., Pfeffer J., Ablain M., Guérou A., and Chen J.
    2021, “Closing the global mean sea level budget from altimetry, GRACE/GRACE Follow-On and Argo data (2005-present).”, Proceedings EGU 2021, 19-30 April 2021, EGU21-2051, Session CL4.1/CR7.6/OS4.22, DOI: 10.5194/egusphere-egu21-2051.
  102. Lecomte H., Rosat S., and Mandea M.
    2021, “Study of the accuracy of monthly time-variable satellites gravity field estimates.”, Proceedings EGU 2021, 19-30 April 2021, EGU21-4136, Session G4.2, DOI: 10.5194/egusphere-egu21-4136.
  103. Pfeffer J., Cazenave A., and Barnoud A.
    2021, “Analysis of the interannual variability in satellite gravity solutions: impact of climate modes on water mass displacements across continents and oceans.”, Proceedings EGU 2021, 19-30 April 2021, EGU21-2217, Session G3.1/CL5.1.10, DOI: 10.5194/egusphere-egu21-2217.
  104. Lecomte H., Rosat S., and Mandea M.
    2021, “The time-variable gravity field estimates and their impact in the detectability of the Earth’s core signals.”, Proceedings 19th International Symposium on Geodynamics and Earth Tides 2021, 23-26 June 2021, Session 5: Time variable gravity and mass redistribution.
  105. Firsov I., Gillet N., Jault D., and Mandea M.
    2021, “Inversion for the quasi-geostrophic stream function in the fluid outer core from geomagnetic observations.”, Proceedings IAGA-IASPEI GA, India, 21-27 August 2021.
  106. Mandea M., Cazenave A., Dehant V., Barnoud A., Firsov I., Gerick F., Pfeffer J., Rekier J., Schwaiger T., Triana S.A., and Zhu P.
    2021, “Our Planet deep interior – a view from the magnetic, gravity and the Earth’s rotation observations.”, Proceedings IAGA-IASPEI GA, India, Virtual, 21-27 August 2021.
  107. Schwaiger T., Gillet N., Jault D., and Mandea M.
    2021, “Recovery of rapid core motions: a synthetic study.”, Proceedings IAGA-IASPEI GA, India, 21-27 August 2021.
  108. Dehant V., Rekier J., Puica M., Folgueira M., Trinh A., and Van Hoolst T.
    2021, “Topographic coupling at core-mantle boundary in rotation and orientation changes of the Earth.”, Proceedings AGU Fall Meeting, New Orleans, 13-17 December 2021, DI35D-0052, 944117.
  109. Shih S.A., Triana S.A., and Dehant V.
    2021, “Turbulent Ekman Layer over a Wavy Surface in Precessionally Driven Flow.”, Proceedings AGU Fall Meeting, New Orleans, 13-17 December 2021, Session DI014 - New Insights into Earth's Dynamic Core From Interdisciplinary Perspectives, DI35D-0056, 854388.
  110. Sert H., Hugentobler U., Karatekin Ö., and Dehant V.
    2021, “UT1-UTC transfer to Galileo constellation using VLBI transmitters.”, Proceedings AGU Fall Meeting, New Orleans, 13-17 December 2021, Session G013 - Reference Frames: Determination, Usage, and Application, G55C-0259, 948955.
  111. Rojas R., Perevalow A., Triana S.A., Zimmerman D.S., Stone D., and Lathrop D.P.
    2021, “Sweet Spots for Dynamo Action in a 1000 Rm Spherical Couette Experiment.”, Proceedings AGU Fall Meeting, New Orleans, 13-17 December 2021, NG33A-08, 907562.
  112. Triana S.A., Rekier J., Trinh A., and Dehant V.
    2021, “The Ohmic and Viscous Damping of the Earth's Free Core Nutation.”, Proceedings AGU Fall Meeting, New Orleans, 13-17 December 2021, DI34B-01, 896655.
  113. Barik A., Triana S.A., Aurnou J.M., Calkins M.A., and Stanley S.
    2021, “Onset of convection in rotating spherical shells.”, Proceedings AGU Fall Meeting, New Orleans, 13-17 December 2021, NG32A-01, 868576.
  114. Pfeffer J., Cazenave A., Barnoud A., Blazquez A., Mandea M., and Dehant V.
    2021, “Multidisciplinary analysis of the temporal variations of the gravity field acquired during the GRACE and GRACE-FO missions.”, Proceedings AGU Fall Meeting, New Orleans, 13-17 December 2021, G11A-05, 816727.
  115. Barnoud A., Pfeffer J., Guérou A., Frery M.-L., Siméon M., Cazenave A.A., Chen Ji., Llovel W., Thierry V., Legeais J.-F., and Ablain M.
    2021, “Non-Closure of the Global Mean Sea Level Budget Since 2016: Contributions of Altimetry and Argo.”, Proceedings AGU Fall Meeting, New Orleans, 13-17 December 2021, G32A-04, 809054.
  116. Marti F., Blazquez A., Meyssignac B., Ablain M., Barnoud A., Pfeffer J., Jugier R., Fraudeau R., Chenal J., Restano M., Benveniste J., Larnicol G., Dibarboure G., and Bignalet-Cazalet F.
    2021, “Monitoring the Ocean Heat Content and the Earth Energy imbalance from space altimetry and space gravimetry.”, Proceedings AGU Fall Meeting, New Orleans, 13-17 December 2021, GC23C-02, 797937.
  117. Schwaiger T., Gillet N., Jault D., and Mandea M.
    2021, “Local Estimation of the Core Surface Flow.”, Proceedings AGU Fall Meeting, New Orleans, 13-17 December 2021, DI35D-0053, 837632.
  118. Moreira L., Cazenave A.A., Barnoud A., and Chen J.
    2021, “Sea-level fingerprints due to ongoing land ice melting in altimetry-based sea-level data.”, Proceedings AGU Fall Meeting, New Orleans, 13-17 December 2021, G32A-05, 882303.
  119. Pfeffer J., Cazenave A., Barnoud A., Blazquez A., Mandea M., and Dehant V.
    2021, “Detecting climate modes in the global water cycle measured during the GRACE and GRACE-FO missions.”, Proceedings AGU Fall Meeting, New Orleans, 13-17 December 2021, G31A-01, 816886.
  120. Lecomte H., Rosat S., and Mandea M.
    2021, “On the detectability of the earth’s core signal using space gravity measurements.”, Proceedings AGU Fall Meeting, New Orleans, 13-17 December 2021, DI35D-00543, 889498.
  121. Gouzenes Y., Cazenave A. and the ESA CCI Coastal sea level team
    2021, “New network of virtual coastal stations from satellite altimetry.”, Proceedings AGU Fall Meeting, New Orleans, 13-17 December 2021, G32A-0248, 822972.

Other

  1. Gelenbe E., Brasseur G., Chefneux L., Dehant V., Halloin V., Haton J.-P., Judkiewicz M., Rentier B., Weikmans R.
    2020, “Du partage de la connaissance et de la promotion d’une « science ouverte » – Réflexions sur la diffusion des connaissances à travers les grands colloques internationaux, les revues scientifiques, et la communication libre et rapide entre chercheurs et innovateurs dans un contexte de réduction de l’empreinte climatique.”, Rapports Opinio de l'Académie royale de Belgique, 48 pages.
  2. Gelenbe E., Brasseur G., Chefneux L., Dehant V., Fabjańska A., Halloin V., Judkiewicz M., Mrša V., Perez-Ariaga I.J.
    2022, “Challenges for European Science and Technology Driven Innovation in Europe.”, Eurocase website publication.

Major achievements


    The numbers in [ ] refer to the peer-reviewed publications as given here above.

    Gravity data – external geophysical contributions and core contributions [5,8,9,10,11,12,19,23,32,33,35,42,46,52,55,61,62,67]

    Studies using GRACE and GRACE Follow-On satellite gravimetry have advanced understanding of Earth’s mass distribution and variability. Findings highlight salinity errors in sea-level budget misclosure, the roles of ocean temperature and mass redistribution in regional sea-level change, and the influence of multiple climate modes on water mass transport. Research has also revealed discrepancies between satellite-based terrestrial water storage and hydrological models, pointing to unresolved processes such as groundwater dynamics and human impacts. To improve accuracy, methods include advanced gravity field filtering, data gap-filling, and corrections for external geophysical signals. Studies further detect interannual oscillations in climate and rotation, possibly linked to deep Earth processes, and examine gravitational coupling between the core and surface. New insights into inner core dynamics suggest differential rotation, with gravity data constraining its motion despite challenges in separating core from surface signals.


    Improvement in Earth rotation and reference frames [26,29,36]

    Efforts to refine Earth rotation and gravity field measurements center on improving the Terrestrial Reference Frame (TRF) and Earth orientation parameters. Alternative methods for determining UT1-UTC include mounting a VLBI transmitter on GNSS satellites, enabling ~30 μs precision. The GENESIS mission seeks to co-locate multiple space geodetic techniques on one platform, reducing inconsistencies and targeting TRF accuracy of 1 mm and stability of 0.1 mm/year. Simulations for the E-GRASP satellite indicate these goals could be met within five years, advancing GENESIS’s objectives.


    Magnetic field observation and core flows [3,4,18,20,21, 25,31,47,48,49,50,53,54]

    Recent studies of Earth’s core dynamics and geomagnetic variations reveal rapid magnetic field changes detected by satellites and observatories. These variations, influenced by mantle conductivity and ionospheric fields, occur on scales of 10–15 years for large wavelengths and 6–7 years for smaller ones. The ongoing dipole decay and South Atlantic Anomaly (SAA) evolution may signal an impending geomagnetic transition. Geomagnetic jerks—sudden field shifts—are linked to core motions and possibly Alfvén waves.

    New inversion methods allow local estimates of core surface flow from magnetic field data, assuming quasi-geostrophic flow and negligible diffusion. Tested on geodynamo simulations, they reconstruct large-scale flow patterns, with zonal motions aligning with length-of-day variations and mantle electromagnetic torques proving more significant than once thought. Observations also reveal torsional Alfvén waves with sub-decadal periods, though much rapid variability arises from non-axisymmetric equatorial motions. These include interannual westward-drifting wave-like patterns interpreted as Magneto-Coriolis (MC) eigenmodes, shaped by the background magnetic field.

    Further evidence suggests interannual geomagnetic variations may result from Magnetic-Archimedes-Coriolis (MAC) waves in a stratified layer beneath the core, or quasi-geostrophic Alfvén waves seen in geodynamo simulations, propagating slightly below Alfvén velocity. Satellite data have also traced ultra-low-frequency waves and ionospheric irregularities, pointing to possible seismic precursors.

    Proton flux measurements refine understanding of the SAA, showing its area anti-correlates with solar activity and has drifted 7° west in 24 years, with higher-energy protons driving larger shifts—key for space weather and geomagnetic environment studies.


    Gravitational coupling and core signal in gravity field [1,2,44,45,51]

    Gravity variations detected by GRACE mainly reflect surface water mass changes but also capture weaker signals from deep Earth processes. Mass redistributions in the outer core, mantle–core interactions, and inner core deformation contribute to global gravity changes, though at magnitudes about ten times smaller than surface effects. GRACE data have also been used to constrain inner core differential rotation, with upper bounds of ~0.4° over 12 years, though hydrological signals may affect estimates. Simulations of inner core growth further suggest compaction-driven convection may remain active, producing structural heterogeneities near its boundary.


    System Earth and core contributions (e.g., at 6 years) [34,41,57]

    A 6-year cycle has been identified in Earth’s rotation, core modes, climate, and atmospheric dynamics, linking deep core processes to surface climate variability. Satellite and model data confirm these oscillations in sea level, temperature, hydrology, and atmospheric angular momentum, synchronized with solid Earth motions. A 7-year signal in gravity and magnetic field data further indicates core-driven interannual variability.


    Earth rotation observations and core flow and modes [6,15,59]

    Long-term observations suggest links to magneto-Coriolis waves, the only modes with sufficient damping to be observable in the absence of stratification. Recent studies of Earth’s rotation and core dynamics highlight the role of deep interior processes in observed variations. VLBI nutation data have been used to refine nutation models and track changes in the free core nutation (FCN, ~430 days in space). A “V-shaped” amplitude trend was identified—decaying before 1999 and strengthening afterward—possibly linked to nearby inertial modes with ~7000-day beat periods or interactions with 400- and 460-day modes. Deep Earth structure also affects nutations through the Basic Earth Parameters (BEP), motivating new studies that incorporate viscosity, magnetic fields, and density stratification in the core.

    Analyses of polar motion (PM) and length-of-day (ΔLOD) variations across time scales show that quasi-six-year PM oscillations are mainly driven by atmosphere–ocean–hydrosphere (AOH) forcing. In ΔLOD, however, removing AOH effects enhances the signal, pointing to contributions from the deep interior. Together, these findings underscore the importance of viscosity, magnetic fields, and stratification in shaping Earth’s rotational and core dynamics.


    Core flow and core modes – laboratory experiments [14,56]

    Laboratory experiments and numerical simulations provide insights into planetary interior flows driven by precession, libration, differential rotation, and boundary topography. Key challenges include characterizing core turbulence, understanding interactions between multiple forcings, and achieving a laboratory fluid dynamo. Progress requires integrating simulations, experiments, and observations.

    Studies of turbulence in spherical Couette systems show that centrifugal instability in the boundary layer arises when the inner sphere rotates more slowly or in the opposite direction to the outer sphere. This instability produces small-scale structures that trigger bulk turbulence and enhance angular momentum transport.


    Modelling of core flow and modes [7,13,24,39,40]

    Numerical models of nutations and the Free Core Nutation (FCN) show that viscous and Ohmic dissipation occur mainly near the core boundary. Interactions between rotational and core eigenmodes depend on magnetic effects, density stratification, and turbulence. Two-layer planet models indicate that core–mantle boundary (CMB) dissipation damps the FCN and slightly shifts its resonance frequency.

    Studies of convection in rotating spherical layers refine scaling laws for critical parameters in the moderate Ekman number range relevant to geophysics. Investigations of core flow under longitudinal libration reveal that stratification affects flow near the CMB but has little impact on libration amplitude. A stably stratified layer, however, can suppress resonances, enhance horizontal flow, and generate a non-axisymmetric induced magnetic field.


    CMB electromagnetic coupling [38,43,65]

    A study on electromagnetism at moving interfaces shows that the correct electric field continuity condition in magnetohydrodynamics depends on shear within a thin viscous layer, resolving inconsistencies in sliding-contact models. This provides guidelines for numerical simulations of planetary interiors where conducting solids interact with low-viscosity fluids.

    Research on Earth’s magnetic field at the core–mantle boundary (CMB) finds that although horizontal field components add little observational insight, they constrain surface fluid motions. A method to calculate surface flow shear accounting for mantle conductivity reveals larger shear values than predicted by synthetic models, suggesting mantle conductivity plays a key role and that quasi-geostrophic assumptions cannot fully capture core surface dynamics.

    Additional studies examine boundary conditions in numerical models of the core, where conductivity contrasts between the liquid core and surrounding layers render both no-slip and free-slip conditions inadequate.


    Important properties of overlying mantle [16,17,60,63]

    Studies of Earth’s deep mantle explore its structure, composition, physical properties, and dynamics using seismology, geophysics, and geochemistry. Major features include the Large Low Shear-Velocity Provinces (LLSVPs) beneath the Pacific and southwestern Africa, which exhibit low seismic velocity gradients, lateral flow, and upwelling. Subduction around these regions shapes plate divergence and convergence, while the uneven Core-Mantle Boundary (CMB) enables core–mantle coupling through electromagnetic, viscous, and topographic interactions.

    High-pressure experiments help interpret mantle properties, and geomagnetic observations—such as dipole moment decay, the South Atlantic Anomaly, and geomagnetic jerks linked to Alfven waves—point to possible geomagnetic transitions. Transient mass redistributions during mineral phase transitions have also been detected. LLSVPs, studied via seismology and geodynamical modeling, show decadal variations in secular variation (SV) beneath their footprints, indicating significant core flow dynamics rather than stilted flow in these regions.


    CMB topography, turbulence and core flow [30,37,58,64,66]

    Studies of energy dissipation in precessing and nutating flows show that most dissipation occurs in boundary layers, which are difficult to analyze in turbulent regimes. Numerical simulations of a precessing sphere indicate that turbulence increases dissipation but not enough to match observations, suggesting a significant role for electromagnetic coupling.

    Research on core–mantle boundary (CMB) topography and length-of-day (LOD) variations identifies specific harmonic degrees where resonance amplifies tidal effects, with fortnightly and monthly tides showing observable amplifications linked to topography. Analyses of dynamic pressure torque at the CMB, using higher-degree spherical harmonics, reveal that core flattening has the largest effect on nutations, while other topographic features contribute less than previously thought.

    Comparisons between fully dynamic pressure solutions and tangentially geostrophic (TG) estimates show excellent agreement for steady core-surface dynamics, though TG estimates have limitations near the equator and during rapid flow changes. Accounting for form-drag from wave interactions with irregular boundaries further reduces the electromagnetic coupling needed to explain nutation observations.


    Improvement in planetary science and solar physics [27,28]

    Recent studies of solar dynamics have identified a new class of inertial eigenmodes, distinct from Rossby and acoustic waves. Numerical models indicate these waves propagate retrograde, are equatorially antisymmetric, and exhibit significant radial velocity deep in the convective zone, weakening near the surface. Observations may also reveal tesseral-like Rossby modes, offering additional insight into solar interior dynamics.

    In planetary science, research investigates the origins, evolution, and habitability of planetary systems. Comprehensive analyses of the solar system—from terrestrial and giant planets to small bodies and interstellar boundaries—highlight priorities for future space exploration missions.